SINTA Integration¶
The SINTA (Strategic Intelligence and Analytics) integration connects the Stratpoint Timesheet Application with the SINTA business intelligence platform, enabling advanced analytics, predictive insights, and strategic decision support through comprehensive data analysis.
Integration Overview¶
SINTA System Architecture¶
graph TB
A[Timesheet Application] --> B[SINTA Integration Layer]
B --> C[Data Pipeline]
B --> D[Analytics Engine]
B --> E[Intelligence Platform]
C --> F[Data Extraction]
C --> G[Data Transformation]
C --> H[Data Loading]
D --> I[Predictive Analytics]
D --> J[Performance Analytics]
D --> K[Resource Analytics]
E --> L[Strategic Dashboards]
E --> M[Predictive Models]
E --> N[Intelligence Reports]
O[SINTA Platform] --> B
Key Integration Features¶
- Real-Time Data Streaming: Continuous data flow to SINTA for real-time analytics
- Predictive Analytics: Machine learning models for forecasting and optimization
- Strategic Intelligence: Business intelligence dashboards and insights
- Performance Optimization: Data-driven recommendations for improvement
- Advanced Reporting: Sophisticated analytics and visualization capabilities
Configuration and Setup¶
SINTA Integration Configuration¶
{
"sinta_config": {
"api_endpoint": "https://api.sinta.stratpoint.com/v3",
"authentication": {
"type": "oauth2",
"client_id": "timesheet_sinta_client",
"client_secret": "${SINTA_CLIENT_SECRET}",
"scope": ["data_ingestion", "analytics", "reporting", "predictions"]
},
"data_pipeline": {
"streaming_enabled": true,
"batch_sync_frequency": "hourly",
"real_time_events": ["time_entry", "project_update", "approval"],
"batch_data_types": ["historical_data", "aggregated_metrics", "reference_data"]
},
"analytics_settings": {
"enable_predictive_models": true,
"enable_anomaly_detection": true,
"enable_optimization_recommendations": true,
"model_refresh_frequency": "daily"
},
"data_retention": {
"raw_data_retention_days": 2555, // 7 years
"aggregated_data_retention_days": 3650, // 10 years
"prediction_data_retention_days": 365
}
}
}
Data Schema Mapping¶
// SINTA Data Schema Mapping
const sintaDataSchema = {
entities: {
employee: {
primary_key: "employee_id",
attributes: [
"employee_id", "full_name", "email", "department_id",
"role", "hire_date", "employment_type", "manager_id",
"skill_set", "certification_level", "performance_rating"
],
relationships: ["department", "manager", "projects", "time_entries"]
},
project: {
primary_key: "project_id",
attributes: [
"project_id", "project_name", "client_id", "project_type",
"start_date", "end_date", "budget", "status", "priority",
"complexity_score", "risk_level", "technology_stack"
],
relationships: ["client", "team_members", "time_entries", "milestones"]
},
time_entry: {
primary_key: "time_entry_id",
attributes: [
"time_entry_id", "employee_id", "project_id", "date",
"hours", "work_category", "is_billable", "description",
"approval_status", "created_at", "updated_at"
],
relationships: ["employee", "project", "approver"]
},
client: {
primary_key: "client_id",
attributes: [
"client_id", "client_name", "industry", "size", "tier",
"contract_value", "satisfaction_score", "retention_risk"
],
relationships: ["projects", "contacts"]
}
},
metrics: {
utilization_metrics: [
"utilization_rate", "billable_hours", "non_billable_hours",
"overtime_hours", "efficiency_score"
],
project_metrics: [
"project_progress", "budget_variance", "schedule_variance",
"quality_score", "client_satisfaction"
],
financial_metrics: [
"revenue", "profit_margin", "cost_per_hour",
"billing_rate", "collection_efficiency"
],
performance_metrics: [
"productivity_score", "quality_rating", "collaboration_score",
"innovation_index", "learning_velocity"
]
}
};
Data Pipeline Integration¶
Real-Time Data Streaming¶
// Real-Time Data Streaming to SINTA
function streamDataToSINTA(eventType, eventData) {
const streamingConfig = getSINTAStreamingConfig();
if (!streamingConfig.real_time_events.includes(eventType)) {
return; // Event type not configured for real-time streaming
}
const streamEvent = {
event_id: generateEventId(),
event_type: eventType,
timestamp: new Date().toISOString(),
source: 'stratpoint_timesheet',
data: transformDataForSINTA(eventData, eventType),
metadata: {
version: '1.0',
schema_version: sintaDataSchema.version,
correlation_id: generateCorrelationId()
}
};
// Send to SINTA streaming endpoint
return sendToSINTAStream(streamEvent);
}
// Time Entry Streaming
function streamTimeEntryEvent(timeEntry, action) {
const eventData = {
time_entry_id: timeEntry.id,
employee_id: timeEntry.user_id,
project_id: timeEntry.project_id,
date: timeEntry.log_date,
hours: timeEntry.spent_hours,
work_category: timeEntry.work_category,
is_billable: timeEntry.is_billable,
description: timeEntry.description,
approval_status: timeEntry.approval_status,
action: action, // 'created', 'updated', 'approved', 'rejected'
timestamp: new Date()
};
return streamDataToSINTA('time_entry', eventData);
}
// Project Update Streaming
function streamProjectUpdateEvent(project, updateType) {
const eventData = {
project_id: project.id,
project_name: project.name,
client_id: project.client_id,
status: project.status,
progress_percentage: project.progress_percentage,
budget_used: project.budget_used,
team_size: project.team_members.length,
update_type: updateType, // 'status_change', 'milestone_completed', 'budget_update'
timestamp: new Date()
};
return streamDataToSINTA('project_update', eventData);
}
Batch Data Synchronization¶
// Batch Data Synchronization
function performBatchSyncToSINTA() {
const syncResults = {
started_at: new Date(),
sync_jobs: [],
total_records: 0,
errors: []
};
const batchJobs = [
{ type: 'employee_data', handler: syncEmployeeData },
{ type: 'project_data', handler: syncProjectData },
{ type: 'time_entry_data', handler: syncTimeEntryData },
{ type: 'financial_data', handler: syncFinancialData },
{ type: 'performance_metrics', handler: syncPerformanceMetrics }
];
batchJobs.forEach(job => {
try {
const jobResult = job.handler();
syncResults.sync_jobs.push({
type: job.type,
status: 'completed',
records_processed: jobResult.count,
duration_ms: jobResult.duration
});
syncResults.total_records += jobResult.count;
} catch (error) {
syncResults.errors.push({
job_type: job.type,
error: error.message,
timestamp: new Date()
});
syncResults.sync_jobs.push({
type: job.type,
status: 'failed',
error: error.message
});
}
});
syncResults.completed_at = new Date();
syncResults.duration_ms = syncResults.completed_at - syncResults.started_at;
// Send sync summary to SINTA
sendSyncSummaryToSINTA(syncResults);
return syncResults;
}
// Employee Data Synchronization
function syncEmployeeData() {
const employees = getAllActiveEmployees();
const transformedData = employees.map(employee => ({
employee_id: employee.id,
full_name: employee.full_name,
email: employee.email,
department_id: employee.department_id,
department_name: employee.department.name,
role: employee.role,
hire_date: employee.hire_date,
employment_type: employee.employment_type,
manager_id: employee.manager_id,
skill_set: employee.skills || [],
certification_level: employee.certification_level,
performance_rating: getLatestPerformanceRating(employee.id),
utilization_rate: calculateCurrentUtilizationRate(employee.id),
last_updated: new Date()
}));
return sendBatchDataToSINTA('employee_data', transformedData);
}
// Performance Metrics Synchronization
function syncPerformanceMetrics() {
const period = getCurrentPeriod();
const employees = getAllActiveEmployees();
const metricsData = employees.map(employee => {
const metrics = calculateEmployeeMetrics(employee.id, period);
return {
employee_id: employee.id,
period: period,
utilization_rate: metrics.utilization_rate,
billable_hours: metrics.billable_hours,
productivity_score: metrics.productivity_score,
quality_rating: metrics.quality_rating,
collaboration_score: metrics.collaboration_score,
client_satisfaction: metrics.client_satisfaction,
project_count: metrics.active_projects,
revenue_generated: metrics.revenue_generated,
calculated_at: new Date()
};
});
return sendBatchDataToSINTA('performance_metrics', metricsData);
}
Predictive Analytics Integration¶
Predictive Model Integration¶
// Predictive Analytics Integration
function requestPredictiveAnalysis(analysisType, parameters) {
const analysisRequest = {
analysis_id: generateAnalysisId(),
analysis_type: analysisType,
parameters: parameters,
requested_by: getCurrentUser().id,
requested_at: new Date()
};
const analysisHandlers = {
'utilization_forecast': requestUtilizationForecast,
'project_risk_assessment': requestProjectRiskAssessment,
'resource_optimization': requestResourceOptimization,
'revenue_prediction': requestRevenuePrediction,
'attrition_risk': requestAttritionRiskAnalysis
};
const handler = analysisHandlers[analysisType];
if (!handler) {
throw new Error(`Unknown analysis type: ${analysisType}`);
}
return handler(analysisRequest);
}
// Utilization Forecast
function requestUtilizationForecast(request) {
const forecastRequest = {
...request,
model_type: 'time_series_forecast',
input_data: {
historical_utilization: getHistoricalUtilizationData(request.parameters.period),
seasonal_factors: getSeasonalFactors(),
project_pipeline: getProjectPipeline(),
team_changes: getPlannedTeamChanges()
},
forecast_horizon: request.parameters.forecast_months || 6,
confidence_intervals: [0.8, 0.95]
};
return sendPredictionRequestToSINTA('utilization_forecast', forecastRequest);
}
// Project Risk Assessment
function requestProjectRiskAssessment(request) {
const project = getProject(request.parameters.project_id);
const riskAssessmentRequest = {
...request,
model_type: 'risk_classification',
input_data: {
project_characteristics: {
budget: project.budget,
duration: project.duration_days,
team_size: project.team_size,
complexity_score: project.complexity_score,
technology_stack: project.technology_stack,
client_tier: project.client.tier
},
historical_performance: getProjectHistoricalPerformance(project.id),
team_experience: getTeamExperienceMetrics(project.team_members),
similar_projects: getSimilarProjectsData(project)
},
risk_factors: ['schedule', 'budget', 'quality', 'scope', 'resource']
};
return sendPredictionRequestToSINTA('project_risk_assessment', riskAssessmentRequest);
}
// Resource Optimization
function requestResourceOptimization(request) {
const optimizationRequest = {
...request,
model_type: 'optimization',
input_data: {
current_allocation: getCurrentResourceAllocation(),
project_demands: getProjectResourceDemands(request.parameters.period),
employee_skills: getEmployeeSkillMatrix(),
availability: getEmployeeAvailability(request.parameters.period),
constraints: {
max_utilization: 0.9,
min_utilization: 0.7,
skill_requirements: getSkillRequirements(),
team_preferences: getTeamPreferences()
}
},
optimization_objectives: ['maximize_utilization', 'minimize_cost', 'maximize_satisfaction']
};
return sendPredictionRequestToSINTA('resource_optimization', optimizationRequest);
}
Prediction Results Processing¶
// Process Prediction Results from SINTA
function processPredictionResults(predictionId) {
const prediction = getSINTAPredictionResults(predictionId);
if (prediction.status !== 'completed') {
return { status: 'pending', message: 'Prediction still in progress' };
}
const processedResults = {
prediction_id: predictionId,
analysis_type: prediction.analysis_type,
confidence_score: prediction.confidence_score,
results: {},
recommendations: [],
visualizations: []
};
switch (prediction.analysis_type) {
case 'utilization_forecast':
processedResults.results = processUtilizationForecast(prediction.results);
break;
case 'project_risk_assessment':
processedResults.results = processProjectRiskAssessment(prediction.results);
break;
case 'resource_optimization':
processedResults.results = processResourceOptimization(prediction.results);
break;
case 'revenue_prediction':
processedResults.results = processRevenuePrediction(prediction.results);
break;
case 'attrition_risk':
processedResults.results = processAttritionRiskAnalysis(prediction.results);
break;
}
// Generate actionable recommendations
processedResults.recommendations = generateRecommendations(
prediction.analysis_type,
processedResults.results
);
// Store results for future reference
storePredictionResults(processedResults);
return processedResults;
}
// Generate Actionable Recommendations
function generateRecommendations(analysisType, results) {
const recommendationGenerators = {
'utilization_forecast': generateUtilizationRecommendations,
'project_risk_assessment': generateRiskMitigationRecommendations,
'resource_optimization': generateResourceRecommendations,
'revenue_prediction': generateRevenueRecommendations,
'attrition_risk': generateRetentionRecommendations
};
const generator = recommendationGenerators[analysisType];
return generator ? generator(results) : [];
}
// Utilization Recommendations
function generateUtilizationRecommendations(forecastResults) {
const recommendations = [];
forecastResults.employee_forecasts.forEach(forecast => {
if (forecast.predicted_utilization < 0.7) {
recommendations.push({
type: 'low_utilization_alert',
priority: 'medium',
employee_id: forecast.employee_id,
description: `${forecast.employee_name} predicted utilization (${forecast.predicted_utilization}%) below target`,
suggested_actions: [
'Assign to additional projects',
'Provide training opportunities',
'Consider business development activities'
]
});
} else if (forecast.predicted_utilization > 0.95) {
recommendations.push({
type: 'overutilization_alert',
priority: 'high',
employee_id: forecast.employee_id,
description: `${forecast.employee_name} predicted utilization (${forecast.predicted_utilization}%) above sustainable level`,
suggested_actions: [
'Redistribute workload',
'Hire additional resources',
'Extend project timelines'
]
});
}
});
return recommendations;
}
Strategic Intelligence Dashboards¶
Executive Intelligence Dashboard¶
// Executive Intelligence Dashboard
function generateExecutiveIntelligenceDashboard(period) {
const dashboard = {
period: period,
strategic_metrics: {},
predictive_insights: {},
performance_analytics: {},
risk_indicators: {},
recommendations: []
};
// Strategic Metrics
dashboard.strategic_metrics = {
revenue_growth: calculateRevenueGrowth(period),
profit_margin_trend: calculateProfitMarginTrend(period),
client_satisfaction_index: calculateClientSatisfactionIndex(period),
employee_engagement_score: calculateEmployeeEngagementScore(period),
market_position_index: calculateMarketPositionIndex(period)
};
// Predictive Insights
dashboard.predictive_insights = {
revenue_forecast: getSINTARevenueForecast(period),
capacity_forecast: getSINTACapacityForecast(period),
attrition_risk: getSINTAAttritionRisk(period),
market_opportunities: getSINTAMarketOpportunities(period)
};
// Performance Analytics
dashboard.performance_analytics = {
productivity_trends: getProductivityTrends(period),
quality_metrics: getQualityMetrics(period),
efficiency_indicators: getEfficiencyIndicators(period),
innovation_metrics: getInnovationMetrics(period)
};
// Risk Indicators
dashboard.risk_indicators = {
project_risks: getProjectRiskSummary(period),
financial_risks: getFinancialRiskSummary(period),
operational_risks: getOperationalRiskSummary(period),
strategic_risks: getStrategicRiskSummary(period)
};
// Strategic Recommendations
dashboard.recommendations = generateStrategicRecommendations(dashboard);
return dashboard;
}
Integration Health and Monitoring¶
SINTA Integration Health Check¶
// SINTA Integration Health Monitoring
function performSINTAHealthCheck() {
const healthStatus = {
overall_status: 'healthy',
components: {},
last_check: new Date()
};
// Test API connectivity
try {
const apiTest = testSINTAAPIConnection();
healthStatus.components.api = {
status: 'healthy',
response_time: apiTest.response_time,
last_sync: apiTest.last_sync
};
} catch (error) {
healthStatus.components.api = {
status: 'unhealthy',
error: error.message
};
healthStatus.overall_status = 'degraded';
}
// Check data pipeline
const pipelineHealth = checkSINTADataPipeline();
healthStatus.components.data_pipeline = pipelineHealth;
// Check analytics models
const modelsHealth = checkSINTAModels();
healthStatus.components.analytics_models = modelsHealth;
return healthStatus;
}
// Error Handling and Recovery
function handleSINTAIntegrationError(error, context) {
const errorLog = {
timestamp: new Date(),
error_type: error.type,
message: error.message,
context: context,
severity: determineSeverity(error)
};
logSINTAError(errorLog);
switch (error.type) {
case 'data_pipeline_failure':
return retryDataPipeline(context);
case 'prediction_model_error':
return fallbackToPreviousModel(context);
case 'streaming_connection_lost':
return reconnectStreaming(context);
default:
return escalateToAnalyticsTeam(errorLog);
}
}
This comprehensive SINTA integration enables advanced business intelligence, predictive analytics, and strategic decision support, transforming timesheet data into actionable insights for organizational optimization and growth.